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Generalized point interactions for the radial Schrodimger 
equation via unitary dilations 

C J Fewstert 
Department of Applied Mathematic$ and Theoretical, Physics, University of Cambridge, 
Silver Sheet. Cambridge CB3 9BW. UK 

ReQived 12 July 1994, in final form 29 November 1994 

Abstract. We present an inverse scattering consmaion of genedired point interactions 
(GPIS). these being poht-like objects with non-trivial scatking behaviour. The construction 
is developed for single centre S-wave OPI models with rational S-mJices, and starts from an 
integral transform suggested by the scattering data. The theory of unitary mations is then applied 
to consma a unitary mapping between Ponttyagin spaces which extend tk usual position and 
momentum Hilbert spaces. The OPI Hamiltonian is defrned as a multiplication operator on the 
momentnm Pontryagin space and its free panmeters are fixed by a physical locality requirement. 
We determine the spectral properties and domain of the Hamiltonian in general, and consrmct 
the resolvent and M@Iler wave opentors thus verifying that the Hamiltonian exhibits the required 
scaltering behaviour. The physical Hilbert space is identified. The consmction is illustrated 
by GPL models representing the effective range approximaion. For negative effective range 
we recover a known class of ~n models, whilst the positive effective range models appear to 
be new. We discuss the interpretatio" of these models, along with possible extea$ions to OUT 
construction. 

1. Introduction and main ideas 

Generalized point interactions (GPI) are solvable models in quantum mechanics representing 
point objects with non-trivial scattering behaviour. The, prototype for such models is the 
class of point interactions (PI), corresponding to Hamiltonians with &function potentials 
essentially introduced by Fermi [ l ]  and rigorously defined as self-adjoint extensions of -A 
on the domain of smooth functions compactly supported away from the interaction cenae 
[2]. This construction leads to one-parameter families of PI Hamiltonians in dimensions 2 
and 3 which provide the leading-order (scattering length) approximation to the scattering 
behaviour of Schrodinger operators with short-range potentials in the sector of zero angular 
momentum (see, for example, [3]). We refer the reader to [4] for an extensive bibliopphy 
on PI models. 

GPI models are employed to treat more general scattering behaviour, such as higher- 
order corrections to S-wave scattering, non-trivial scattering in non-zero angular momentum 
sectors or point objects in dimensions d 2.4. Such models have been studied for a long time 
from the pseudo-potential viewpoint in many body physics (see I5.61). The mathematical 
study of such generalized point interaction (GPI) models began in the Russian literature 
with the work of Shirokov [7], and more rigorous formulations were later developed 
by Pavlov [S-101 and Shondin [ l l ,  121 (see also [13]). In contrast to PI models, GPI 

t E-mail address: C.J.Fewster@amtp.cam.ac.uk 
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Hamiltonians are not defined on the usual Hilbert space L2(Rd), but on an extended space 
whose inner product may be indefinite, in which case one must identify a physical Hilbert 
space of states in order to recover the probability interpretation of quantum mechanics. 

In this paper, we introduce and develop a new inverse scattering construction for single 
centre GPI models with non-trivial S-wave scattering. It is currently an open problem to 
extend this construction to higher angular momenta and dimensions d > 4; we discuss this 
further in the Conclusion. Our method is based on the technique of unitary dilationr due 
in origin to Sz-Nagy [141 and extended by Davis [15]. 

The S-wave inverse scattering problem has been partially studied by Shondin [I I], as we 
describe below. First, let us briefly mention the two principal non-inverse GPI constructions, 
which we call the amiliary space and distributional methods. In the auxiliary space 
method, developed by Pavlov and co-workers [9,10], one starts with a given extended 
Hilbert space and then seeks the class of GPI Hamiltonians which ‘live’ on this space. 
On the other hand, the distributional method of Shondin [12] is a direct attempt to define 
H = -A+]@) (01. where w is somewhere in the j < 0 portion of the scale of Sobolev spaces 

= (-A+l)-j/*L2(Rd). The construction leads to aPontryagin spacet i lm = %@@, 
where m is the unique integer such that o E K K _ , - 2 \ K H L , - 1  and the inner product has 
signature (m, m) on the finite dimensional part. The GPI Hamiltonian is then defined on il, 
using Krein’s formula [16]. 

Returning to the inverse problem, Shondin [ll] considered the inverse scattering 
problem in d = 3 for S-wave scattering data of the form 

cot&(k) = k-’r(k2) (1.1) 

where r(z) is a rational function with real coefficients. Shondin refers to this class of data as 
the ‘R class’: it corresponds exactly with the class of rational S-wave S-matrices satisfying 
the usual analytic continuation property S(k) = S*(-k) [171. In particular, the R class 
contains truncated low-energy expansions of the form 

for low-energy parameters L,ro,r,, ..., r. and any n > 0, and thus furnishes 
approximations to the low-energy S-wave behaviour of Schriidinger operators with short- 
range potentials to arbitrary order. Shondin’s method starts by writing down a candidate 
resolvent on a (positive definite) extension of the usual Hilbert space. (In this respect it 
resembles the auxiliary space method). Various free functions in this resolvent are then fixed 
by requiring that the candidate be the resolvent of a self-adjoint operator. However, this 
method is limited to those r(z) with negative imaginary part in the upper half-plane, which 
is a somewhat restrictive sub-class: for example, scattering data of form (1.2) is possible 
only with rl , . . . , r. = 0 and ro < 0. As we will see later, in the context of our method, 
more general scattering data correspond to GPI models defined on Pontryagin spaces. Thus, 
in order to apply Shondin’s method to such data, one would have to guess not only the 
appropriate extension to the Hilbert space, but also its inner product, thereby rendering it 
much less practical as a construction. 

In contrast, the method proposed here allows one to treat the full R class. It proceeds 
from the simple observation that, for point-like interactions, the scarrering data &(k) 
completely specify the S-wave continuum eigenfunctions as U&-) = (2/z)’12sin(kr + 
&(k)), when scattering normalization is imposed. This is quite different from the usual 

t A Ponflyagin space is an indefinite (Krein) inner Product space with a finite rank of indefiniteness-see 
subsection 2.1. 
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situation in inverse scattering theory, where the scattering data specifies (in the first instance) 
only the asymptotic form of the ut@). As a result, the inverse scattering problem for GPI 
models can be solved without recourse to the usual Gel'fand-Levitan machinery. 

The U&) define an integral transform 7 between X = Lz((O, CO), dr) and & = 
L2((0, CO), dk), (i.e. the radial position and momentum Hilbert spaces) by 

(7@)(k) = (2)'" lw sin(kr + &(k))@(r) dr (1.3) 

We adopt I as a candidate for an eigenfunction transform associated with our desired GPI 
Hamiltonian hGp1. Of course, 7 cannot be the full eigenfunction transforni unless it is 
unitary, in which case we can define hop1 = P k Z 7 .  However, when I is non-unitary, 
we may 'dilate' it to a unitary operator between enlarged inner product spaces, using the 
theory of unitary dilations as follows. Firstly, we-quantify the departure of I from unitarity 
by the operators MI = U -'77' and M2 = 1 - PI, and the closures MI and M2 of 
their respective ranges. For scattering data in the R class, we will show that the rank and 
signature of M I  and M2 are finite and given in terms of indices reminiscent of Levinson's 
theorem 1171. 

Next, we define indefinite inner products on the Mj, d together with an operator 
? : X, @ MI -+ ?li @ 3 4 2  which is unitary with respect to the relevant inner products 
and satisfies Px?lx = 7, where Pw is the orthoprojector onto &. ? is said to be a 
unitary dilation? of 7. We emphasise thatthe constrktion of ? and the enlarged inner 
product spaces requires no information beyond that encoded in 7, and is unique up to a 
unitary equivalence and further dilation. To complete the construction, we define the GPI 
Hamiltonian hGpr  by 

where the dagger denotes the Pontryagin space adjoint, and we have used an obvious block 
matrix notation. We will show that A is completely determined by imposing a physical 
locality requirement: that the 'interaction' be localized at the origin. Mathematically, this 
is expressed by requiring the Hamiltonian agrees with the free Hamiltonian away from the 
interaction centre, i.e. hGpI(@. = (-@", 0)' if @ E Cr(0 ,  CO). Subject to this locality 
condition, we have thus constructed both hGpl and its spectral representation. 'fie non- 
uniqueness in our construction Leads to a family of unitarily equivalent GPI Hamiltonians 
with~the s h e  spectral and scattering properties. 

Our plan is as follows. In section 2, we briefly describe some features of analysis 
in indefinite inner product spaces, and also describe the construction of unitary dilations, 
essentially following Davis [U]. In addition, we sketch our construction in a more abstract 
setting. Next, in section 3, we explicitly construct the operators M I  and M2 (which are 
of finite rank) for a generic subclass of the R class-those whose scattering amplitudes 
exhibit only simple poles on the physical sheet-and compute their rank and signature. 
In setion 4, we construct h o p ,  as described above. Subject to the locality condition, we 
show that the eigenvalues of hGp1 occur at precisely those energies for which the scattering 
amplitude derived from (1.1) exhibits poles on the physical sheet, as is the case for ordinary 
scattering from 'nice' potentials. We construct the corresponding eigenfunctions of h m ,  
and isolate the physical Hilbert space. We also determine the domain and resolvent of hGpI ,  

t See section 2 for a note on the nomenclaNre. 
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and explicitly construct its Mdler wave operators in a two-space setting, verifying that they 
exhibit the required scattering theory. 

In section 5,  we illustrate our procedure by constructing GPI models with scattering 
behaviour cots& = -l/(!iL) + kM,  representing the effectiverange approximation of 
low-energy scattering theory [17]. In the case M c 0, W and K are extended to 
larger Hilbert spaces, and we recover the models of 'type &' previously constructed by 
Shondin [I I]. These models also arise as a special case of the auxiliary space construction 
in [8]. The case M t 0, for which Pon'uyagin spaces are required, appears to be new. 
Our methods allow the entire class of GPI Hamiltonians to be constructed, along with 
their spec~al  representations. A particularly interesting subclass of the models constructed 
corresponds to the case L = 00, with scattering theory cot&(k) = k M .  Such models 
reproduce the leading-order behaviour of non-point interactions exhibiting a zero-energy 
resonance. We refer to these models as r e s o m e  point interactions (RPI). 

We also discuss how these GPI models may be used as models for Schrodinger operators 
with spherically, symmetric potentials of compact support. To do this, we employ a general 
methodology for discussing the 'large scale effects of small objects' developed by Kay and 
the author [3]. In particular, we develop fittingformulae (analogous to those given in [3]) 
for matching a given potential V ( r )  to the 'best fit' GPI model. Finally, in section 6,  we 
conclude by discussing various extensions to our method. 

The motivation for the present work arose in a consideration of the scattering of charged 
particles of f  magnetic flux tubes of small radius [IS], in which it was found that the scattering 
lengths for spin-f particles generically take the values 0 or 00 in certain angular momentum 
sectors. In consequence, the analogue of PI models representing dynamics in the background 
of an infinitesimally thin wire of flux fails to describe the leading-order scattering theory 
in these sectors, and should be replaced by models analogous to the RPI models mentioned 
above. The special nature of this system can be attributed to the fact that it is an example 
of supersymmehic quantum mechanics. Elsewhere [19], we will construct the appropriate 
class of RPI for this system. 

2. Preliminaries 

2.1. Unitary dilations 

We begin by describing the unitary dilation the,ory required in what follows. Let XI, . . . , Y& 
be Hilbert spaces and T E L(W, !&). Then T E L(X1 e%, Xz@Y&) is called a dilation 
of T if T = P ~ ? l x  where Px is the orthogonal projector onto Xz. In block matrix 
form, ? takes the form 

Our nomenclature follows that of Halmos [ZO]. Elsewhere (e.g., in the work of Davis [15J), 
the term 'dilation' (or 'dilatation') often means that ?" is a dilation of T" and (?y is a 
dilation of (T")" for each n = 1.2, . . . (in addition, K, = Xz, and % = 36.6). We refer 
to such operators as power dilations: in the block form (2.1), this requires PR"Q = 0 for 
e a c h n = 0 , 1 , 2  ,.... 

According to a result of Sz-Nagy [141, any contracfion T from one Hilbert space to 
another (i.e. a bounded operator satisfying IlTll 4 1) has a unitary dilation between larger 
Hilbert spaces. Subsequently, Davis [15] extended this result to arbitrary closed densely 
defined operators at the cost of introducing indefinite inner product spaces. (It is clear that 
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if llTll > 1, no Hilbert space unitary dilation is possible.) In fact, Davis’ construction 
yields a unitary power dilation of the original operator. This has no physical relevance in 
our construction, and so we  use a more economical ‘cut-down’ version of Davis’ result, 
described below. First, we briefly review the salient features of analysis in indefinite inner 
product spaces. Full treatments can be found in the monographs of BognAr [21] and Azizov 
and Iokhvidov [221. 

We employ a particular class of indefinite inner product spaces known as J-spaces. Let 
3-C be a Hilbert space with (positive definite) inner product (. I .), equipped with a unitary 
involution, J .  We define a non-degenerate indefinite inner product [., .] on X by 

(2.2) 
which we call the J-inner product. X equipped with the J-inner product is called a J -  
space. Nadmits decomposition N= ?C+ €3 3L = ?C+[f]K into the eigenspaces F& of 
J with eigenvalue i l ,  where [+] denotes the orthogonal direct sum in the J-inner product. 
If at least one of the F& is finite dimensional, then X is a Pontryagin space with respect 
to [., .]. 

The topology of a J-space is determined by the Hilbert space norm; however, operator 
adjoints and the notion of unitarity are defined relative to the J-inner product. Thus if 3 
(i = 1.2) are Ji-spaces, and T E L(XI,KZ),  the ( A ,  Jz)-adjoint Ti of T is defined in 
terms of the Hilbert space adjoint T* by 

T t  = J1T’Jz. (2.3) 
Equivalently, [Ttx, y ] ~  = [x ,  T y l ~  for all x E XZ, y E XI. If Lux, u y ] ~  = [ x ,  ~ 1 %  
for all x, y E D C XI, U is said to be (51, Jz)-isomehic; if in addition U is a linear 
isomorphism of XI and X2, and ID = X I ,  U is said to be (31, Jz)-unitary. Equivalently, 
UUt  = 1% and UtU = Bx. If XI = XZ with JI = JZ = J ,  terms such as (31, Jz)- 
isometric are abbreviated to J-isometric etc. 

Returning to the construction of unitary dilations, let T be any bounded operator 
T E Y X l ,  Xz) ,  and define operators MI = 1 - TT* and Mz = n - T*T. It is trivial 
to show that the respective closures W = of their ranges are sgn(Mi)-spaces, and 
hence that K. = @ h.t are.Ji-spaces, where Ji = 1% €3 &Mi). We now define a 
dilation f~ of T by 

[A YJ = (x I JY)  

which has (5,. &)-adjoint ?t equal to 

(2.4) 

Here, we have used the intertwining relations~ Tf(T*T) = f ( T T * ) T  and T * f ( T T * )  = 
f ( Y T ) T * ,  which hold for any continuous Bore1 function f. It is now easy to show that 
T ~ T  = n K  and f i t  = n x, thus verifying that f is a (JI, Jz)-unitary dilation of T. 
In our application, MI and MZ are finite rank, and so the J-spaces constructed above are 
Pontryagin spaces. 

We briefly consider the uniqueness of the unitary dilations constructed above. Suppose 
3u;: are Ji spaces (i = 1,2) and that f : X I  €3 NI + Xz @ NZ is a unitary dilation of T 
with matrix form (2.1). Then, provided that the Mi are finite rank, one may show~that 
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where 2’ = Pi-, Q = Q m ,  and U1 and U2 are unitaries (with respect to the 
J-inner products) from MI and Mz to Y and Q respectively. In addition, P K ~ Q  is an 
orthogonal projection onto XZ @ Q in XZ @ Nz. 

Thus ? is unique up to further dilation and unitary equivalence of the above form. If 
the Mi are not of finite rank, this statement also holds if the Mi are strictly positive. More 
generally, it is not clear whether Q is necessarily orthocomplemented, and therefore whether 
PKmQ exists. 

2.2. Abstract setting 

In this section, we sketch our construction in a general setting, which makes clear how it 
may be extended. In particular, we show how the domain and action of the Hamiltonian is 
determined. 
’ Let X, (i = 1,2) be Hilbert spaces and let A be a densely defined symmetric operator 
with domain ID c XI. Suppose that A possesses two self-adjoint extensions A* such that 

A+ = GAT& (2.7) 

is a self-adjoint operator on XZ with (A + o)-l bounded for some o E R, and ?-* 
: XI + Xz. Let a+ and a- be bounded operators on XZ which 

(2.8) 

where 
are unitary operators 
commute with A and define 

I = a+?-+ + a-T-. 
In OUT application, a+ are determined by the scattering data. We define MI and MZ as 
above. for simplic$y assuming that they are finite rank (as they are in OUT application). The 
unitary dilation I derived above is then used to define a self-adjoint operator B on the 
Pontryagin space UI  = XI @MI by 

.=it( A 0  )i 
O A  

where A is a self-adjoint operator on MZ (with respect to its inner product). Thus 

where 0 = sgnM1 I M 1 l 1 b  (considered as an element of Xz), and B has domain 

D ( B )  = ((9, @)T I ‘2-9 - 0 E D(X) l .  (2.11) 

To gain a more explicit description of D(B) ,  we impose the requirement that B be a 
self-adjoint extension of the non-densely defined operator A @ 0 on ID @ 0 c ill, i.e. 
B(9, O)T = ( A p ,  O)T for all (0 E ID. Later this will carry the physical interpretation, of a 
locality condition. It is easy to show that this requirement is satisfied if and only if Mz is 
invariant under A* and 

A = ( ~ M ~ ~ - ” z A * ~ ~ ~ M ~ ~ 1 ~ 2 ) * .  (2.12) 

As a consequence of locality, we note that if (q, @)T E D ( B )  with B(9,  @)T = (@, 6)T, 
then 9 E D(A*),  and @ = A”q. For take any @ E ID. Then 
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We may therefore rewrite (2.11) as 

(2.14) 

where 01 =a+T+x++a-T-x-+O and x+ = (A++o)-'(A*+o)v,-v,. The ;advantage 
of this expression is that x* can be shown to be the unique element of ker(A* + o) such 
that v, + x* E D(A*).  In our application, x* may be expressed in terms of the value of v, 
and its first derivative at ,the origin. 

To determine the action of B more explicitly, we use the fact that the upper component 
of the right-hand side of (2.10) is equal to A*v, in order to compute 6 = sgnM1IM1 ll%. 
We obtain 

6 = - M l i ( T v ,  - 0) + T(A*v,  - Fi(Tv, - 0)) =TA*v, - i(Tv, - 0) (2.15) 

Using the fact that 01 E D(& this becomes 

6 = i01 + 0(01 - 0) + T(A* + O J ) ~  - (2 + w)(Trp + 0 1  - 0). (2.16) 

The last two terms cancel by definition of and we conclude that 

(2.17) 

3. Determination of MI and Mz 

In this section, we determine the operators M I  = 1 - TT* and MZ = B - T*T, where T 
is an integral transformation arising from the scattering data in the Shondin R class 1111 
given by 

where p ( z )  and q ( z )  are coprime polynomials in W[z], the ring of polynomials with real 
coefficients. In particular, we will show how the rank and signature of the Mi are determined 
by two 'Levinson indices' defined below. We emphasise that our methods are very different 
to eose  of Shondin. 

The scattering amplitude corresponding to &(k) is 

1 .  q(k2) fo(k) = sin &(k) = 
k p(kz)  - ikq(k2)' 

Defining the polynomial W ( z )  by 

P ( 0 )  # 0 2 p(-z? - zq(-z  ) 
(3.3) 

we note that fo(k) exhibits poles where W(ik) = 0. The set Q of zeros of W ( z )  in the 
left-hand half-plane Rez < 0 corresponds to poles of fo(k) such that kZ lies on the physical 
sheet. We refer to the situation where these poles (and hence the corresponding zeros 
of W ( z ) )  are simple as the generic case. In theorem 4.1, we will show that the discrete 

I p(-zZ)/z - q(-zZ) p(0)  = 0 
W ( z )  = 
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spectrum of the GPI Hamiltonian is precisely [ E  = -wz I o E Q} under the requirement of 
localityt. 

The qualitative features of the scattering data (3.1) are described by the degrees of p 
and q. two indices I,’ defined below, and the asymptotic behaviour of cot&(k) given by 

uo = sgn lim cotSo(k) and um = sgn lim cots&) (3.4) k-O+ k-m 

where the limits are allowed to be fw. The indices I,’ are defined by 

where the auxiliary scattering data {(k) is defined as a continuous function on R+ by 

(3.6) 

We refer to I: as the Levinson indices (although Levinson’s theorem [I71 will not hold in 
its usual form). 

We now define the integral transform 7 = cosSo(k)S + sin So(k)C, which is suggested 
by the naive generalized eigenfunctions uk(r) = (2/z)’/*sin(kr +&(k)). Here, S and C 
are the sine and cosine transforms, defined by 

(S@)(k) E l m d r  @(r)sinkr . and (C@)(k) = P S m d r  @(r)coskr 
n o  

(3.7) 

(the integrals are intended as limits in L2-norm). Both are unitary maps from to Kck; 
their inverses have the same form, with r and k exchanged. Thus ‘T is given explicitly by 

(3.8) 

Because S and C furnish the spectral representations of -d2/dr2 on Lz(R+) with Dirichlet 
and Neumann boundary conditions respectively at the origin, we are in the general situation 
of subsection 2.2. 

We now restrict to the generic case and explicitly construct the Mi and compute their 
rank and signature. M2 is given by the following proposition, whose proof is given later in 
this section. 

Proposition 3.1. In the generic case 

(3.9) 

where e&) = e”, and uw is the residue 

uo = Resa2zfo(-iz). (3.10) 

In addition, Ran M2 = span{&, I o E a), and 

rankM2 = f deg W + I: 
sig& = 5 1 (U: -U&) - z;. 

(3.11) 

(3.12) 

t These eigenvalues can be complex: we will retum to this point in subsection 5.3 
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Next, define W to be the space of all L2-vectors of form Q(k2)k(p(k2)2+k2q(k2)2)-1/2, 

(3.13) 

where C J z ]  is the (r  + 1)-dimensional complex vector space of polynomials with complex 
coefficients and degree at most r ,  and U = dmMl is given by 

(3.14) 

such that Q(z)  E @ [ z ]  is a polynomial with complex coefficients. Thus 
MI = (p(k2)2 + k2q(k2)2)-"2k@u-l [k*I 

U = 1 2 deg W + $(U: -U:)  = max(degp, degq}. 

MI is described by the following proposition. 

Proposition 3.2. 
by MI Q(k2)k(p(kz)2 + k2q(k2)2)-1/2 = f i ( k ' ) k ( ~ ( k ~ ) ~  + k2q(kz)z)-'/2, where 

In the generic case, MI vanishes on MI', and its action on MI is given 

Moreover, RanM1 = 3vr, and 

(3.15) 

(3.16) 

(3.17) 

As an example, let us consider the sub-class of the R class considered by Shoiidin [ 111; 
namely, the case where r ( z )  = p ( z ) / q ( z )  has negative imaginary part in the ulpper half- 
plane. In this case, it.is easy to show that there can be no solutions to r(-z2)  = z and 
hence to W ( z )  = 0 in the left-hand half-plane, except on the real axis. Moreover, one 
can show that the residues au at these zeros are necessarily positive, so M2 is a positive 
operator as a result of (3.9). Accordingly, 7 is contractive, and our method yields a unitary 
dilation defined on Hilbert spaces. This explains why Shondin was able to construct these 
GPI models on enlarged Hiibert spaces. 

we now prove the above propositions. 

Proofofproposition 3.1. 

MZ = SI sin280(k)S - e-' sin280(k)C - e-' sinSo(k) C O S S ~ ( ~ ) S  

MZ may be written in two equivalent forms: 

-SI sin cos (3.18) 

=e-' cos2~o(k)c - s-' cos2~o(k)s  -e-' sinSo(k) C O S S ~ ( ~ ) S  

-SI sinSo(k)cosSo(k)C. (3.19) 
To convert this into an integral kernel we use the following lemma, which may be proved 
by standard means (cf [23,theorem IX.291). Here, u ( x )  and w(x)  stand for either sinx or 
cosx, and V and W are the corresponding integral'transforms f r o m ~ q  to 3&. 

Lemma3.3. 
integral kernel 

Let g(k) E L2(R+) n Lmf.R+) and define G = V-Ig(k)W. Then G has 

u(kr)w(kr')g(k) dk (3.20) 

(where the integral is a limit in L2-norm). 
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In the case deg p > degq, sin2So(k) and sinJo(k) cos $(k) are L2nLm and so, applying 
lemma 3.3 to (3.18) and combining terms, MZ has integral kernel 

Making the substitution z = ik and closing the contour in the left-hand half-plane, the 
integrand has a simple pole at each w E Q and (3.9) follows. If degq 2 degp, we ague 
similarly using (3.19) to obtain the same result as before. 

By linear independence of the $, and non-vanishing of the a,, it follows that 
Ran& = MZ = span{$, I w E Q}, so r&Mz = IQl, the cardinality of Q. Using 
residue calculus, one may show that 

(3.22) 

By rewriting the second term as an integral over (0, CO), a small amount of algebra shows 
that the integrand is -i~-I#,(k).  Thus (3.11) is established. 

To compute sigM2, we define the Hermitian form mz(p, @) : M2 x MZ -+ CC. by 
mz(p, @) = (p I M z @ ) .  Labelling the elements of Q as w ~ ,  . . . , qn l ,  and writing 
9 = xi cifmc, we have 

(3.23) 

where A and E are Hermitian. E has components E j j  = (emj I $mi), and is non-singular 
by linear independence of the cm. By Sylvester's law of inertia [24], the signature of Mz 
equals that of A, which has components 

mz(@.@) = x%h, I $ m i b j ( h  I LA)cw = ctEtA%c 
4j .k  

~~ ~ ~ 0; =q 
(3.24) 

A has eigenvalues {am I w E R} U {*laml I w 6 R}. Labelling the wi so that @ I , .  . . , U ,  
are the real elements of Q, we therefore have sig M2 = sigdiag(a,, . . . , am,). (We have 
used the fact that a= = G a n d  in particular that w, E R implies a, E B.) Defining r ( k )  
by (3.6), it is easy to show that cot ((-0) = 1 for o E Q, and that 

I: otherwise. 
Ajj = 

1 
5- 

Z +a a, = 2 lim 
z--, 1 - cot4-(z) $-'(-U)' 

(3.25) 

Thus sigdiag(a1,. . . ,er) is equal to the number of times that { ( k )  = n/4 (mod n) as k 
traverses R+, counted according to the sign of {'(k) at such points. This is related to the 

U Levinson index I; by (3.12). 

Proof ofproposition 3.2. We compute 

(3.26) 

which vanishes identically on the closure of D = ( ~ ( k ~ ) ~  + kZq(kZ) ) l /ZSC~(O,  m) as 
a result of elementary properties of the sine and cosine transforms. Furthermore, D IS 
precisely the space MI defined above, because @ I Dif  and only if (p(k2)2+k2q(k2))1 /2@ 

--I. 
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is the sine transform of a distribution supported at the origin and therefore an odd polynomial 
(cf theorem V.11 in [25]). Hence MI vanishes on 3$ and Ran MI C W. 

Next, we compute the action of MI on MI. By contour inteption 

for polynomials Q(z) such that the operand is in L2. Moreover, it is easy to show that 

(3.28) 

from which the action of MI can be read off as required. 
To compute the rank and signature of MI, we use the fact that 

rank MI - rank MZ = sig MI - sig M2 = dim k e r T  - dim ker I (3.29) 

which follows from the intertwining relations M 1 7  = 7 M 2  and M2I* = ?-*MI. It therefore 
remains to determine the dimensions of the relevant kernels. Firstly, note that k e r r  C MI 
and that (from (3.27)) @ = Q(k2)k(p(k2)2+k2q(k2)2)-1/2 E k e r I *  if and only if ?h E Mi 
and e(-@') = 0 for each o E S2. Thus flWGn(z + w2) divides Q(z) and so 

(3.30) dimker7* = min{ZJ - 1521, 0). 

Now consider k e r l .  We note that (3.28) may be rewritten 

and apply the following abstract algebraic result 

Le"a3.4. 
Al.. . . , A, be distinct elements of @. Then the polynomials PI (z), . . . P,(z), defined by 

Let Q,R E @[zl be coprime with max(degQ,degR) = k > 0, and let 

(Z - Ai)pi(~) = R@i)Qk) - Q ( A J W Z )  (3.32) 

span a min{k;m)-dimensional subspace of Qk-1[z]. 

Proof. Let n = min{k, m]. Then it is enough to show that PI ,  . ~ .  , Pn are linearly 
independent. Assuming that degQ = k, we note that Pi(z) =-R(z)Qi(z) - Q(z)&(z), 
where Qi(z) = (Q(z) - Q(Ai))/(z -hi) and &(z) = (R(z) - R(Ai))/(z - Ai).-Suppose 
the Pi are linearly dependent. Then R(z)S(z) = Q(z)T(z) where S(z) = Cia( &(z) and 
T(z) = E U?. Because Q and R are coprime, 
this implies that S and T vanish identically. But one may easily show that the Qi are 
linearly independent, by explicitly considering their coefficients. We therefore obtain a 
contradiction. 0 

In our application, m = 1521 with Ai = -0; for each i = 1, ..., m and k = 

aiki(z), for some 0 # (011,. 

max{degp, degq] = D. Thus dim7RanMz = min(l521, U} and so 

dimker7=mmin(lS2 - 7 J , O ] .  (3.33) 

ItfollowsthatrankM~-rankM~ = sigMI-sigMz = U-1521, from which(3.16)and(3.17) 
follow. 
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4. The GPI Hamiltonian 

4. I. Locality and spectral propenies 

The results of the previous two sections allow the construction of a unitary dilation ? 
of the integral transform 7. Here, we employ ‘? to define a GPI Hamiltonian consistent 
with scattering theory (3.1). We denote n, = 3c fJ N and nk = @ MZ with J -  
inner products specified by J, = 1% fJ sgn(M,), and Jk = 1% @ sgn(M2). In terms of 
our general discussion in subsection 2.2, we set A = -d2/drZ on domain CF(0, CO), and 
define 7+ = S, ’I- = C, setting 4 and a- to be multiplication by cos&(k) and sin&(k) 
respectively. Thus A+ = S*k2S, the self-adjoint extension of A with Dirichlet boundary 
conditions at the origin, whilst A- = C*kzC is the extension with Neumann boundary 
conditions at the origin. The operators A* + 1 both have bounded inverse. 

The S-wave GPI Hamiltonian is defined by 

where A is a sgn(M2)-self-adjoint operator At = A on Mz. To fix A, we require that 
h ~ p ~ ( @ ’ .  0)’ = (-e”, 0)’ for all @ E Cr(0,w) as a locality requirement. For general 
@ E Mz, we have 

(4.2) 

so 3 4 2  is invariant under A* and it follows immediately from subsection 2.2 that: 

Theorem 4.1. In the generic case, the unique choice of A consistent with locality is 

A = - (sgn(M *)1Mz11/2)-1 c ccWOZ15J (bllMzl-”z. (4.3) 
m€n 

W e  proceed to determine the eigenvectors and eigenvalues of A. First note that 

is then a matter of computation to see that pi = (sgn(Mz)[M21’/z)-I tWj is an eigenvector 
of A with eigenvalue -OJ? for each i = 1,. . . , [a[. Because A has rank I Q [ ,  this exhausts 
the discrete spectrum of hcp~. The following is then immediate. 

Theorem 4.2. In the generic case, and with A is defined as above, hop1 has the following 
speck4 properties: U ( ~ G P I )  = uaac(hGPi) U uPpp(hc~d where U&GPI) = R’ and U&%PI) 
consists of the [GI eigenvalues -U;, whose corresponding eigenvectors are 

(cq I M; 1 ewj) =a;!&,, which follows from the identity euj = ~ c c w l $ w ) ( &  I M;’fwj) .  It 

(4.4) 

The absolutely continuous subspace is the Hilbert space ?%. 

This bears ont OUT earlier statement that the poles of the scattering amplitude on the 
physical sheet correspond to the discrete-energy spectrum, if locality is imposed. 
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The physical Hilbert space is required to be a positive definite invariant subspace of n, 
relative to hGpIt. In ilk, we have the [., .]n,-orthogonal decomposition n, = ?&[+IN, 
where 3 4 2  is spanned by the eigenvectors vi of A. We compute 

mi.# q 
- (4.5) 

( O  CY;] wj = oj. 
[ v i > q j I ~  (tu; I ~ ~ ' t u j )  = 

Hence ilk is decomposable as n, = X[+IE+[+]E-[+IH where E+ is spanned by the pi 
with [qL, q i ] ~  > 0 (oc, > 0), E- is spanned by those with [vi, q i ] ~  < 0 (auj < 0), and 
H is the hyperbolic invariant subspace spanned by those with wj g R. Moreover, this 
is a decomposition into invariant subspack, because D(kz)  is dense in ?&. The physical 
Hilbert space ?&by, is therefore defined by 

?&hp =?'(%[+]E+). (4.6) 
We briefly discuss the uniqueness of the GPI Hamiltonian conshucted in this way. As 

noted in subsection 2.1, .;i is unique up to further unitary dilation and unitary equivalence 
because the Mi are of finite rank. Further dilation merely corresponds to the (trivial) freedom 
to form the direct sum of hp1  with the Hafniltonian of an arbitrary independent system. On 
the other hand, replacing 7 by (n EB Uz)7(n  @ Ul) where Vi is a sgn Mi-unitary operator 
on Mj for i = 1.2, it is easy to show that the local GPI Hamiltonian hbp1 obtained is given 
by 

(4.7) 

We have therefore constructed a family of unitarily equivalent GPI Hamiltonians on il, 
corresponding to the same scattering data. It is clearly sufficient to study hGpI alone in 
order to determine the domain and scattering properties of hb,,. 

4.2. Domain and resolvent 

We now determine the domain and explicit action of the operator hop1 under the locality 
assumption. Our result is the following: 

Theorem 4.3. Let 00 = ( 2 / 7 ~ ) ' / ~ k ~ ~ - ' ( p ( k ~ ) ~  +k2q(k2)2)-1/2. Then in the generic case, 

(4.8) 

where 0 = sgn M I  [MI I1/'Q and 

PV(0) degp =- degq 

AIql = M O )  - Q9'(0) degp = degq (4.9) I -Q9'(0) degp < degq 

t An invariant subspace G of a J-space 
o(n)nG=-G and Ran AIL C C, where the closure is taken in the norm topology of X 

relative. to a linear operator A on Xis a subspace of X such that 
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and P and Q are the leading coefficients of p ( z )  and 4(2) respectively. (In the case MI = 0, 
D(hopr) = {p I (0, p’ E ACl,,(O, m), p, p” E Lz; A[p] = O).) Moreover 

hm( ;)=( -;) 
where 6 is given in terms of 6 = sgn MI IMI 11~’6 by 

(4.10) 

(4.11) 

Proof. The result is a direct application of the discussion in subsection 2.2. The key point 
is that, for each p E D(-d2/drZ/&,,+, the vectors x+ and x- are given by 

x+ = -p(O)e-‘ and x- = p‘(O)e-‘ (4.12) 

which follows because x+ (x-) is the unique element of ker(-d2/dr21gr(0.m) + 1) such 
that p -I- x+ (p + x-) is in the domain of the Laplacian with D ~ c h l e t  (Neumann) boundary 
conditions at the origin. 0 

The resolvent of hGpI may be written in the form of Krein’s formula as 

Here, Ro(z) = S-l(k2 - z)-’S is the free resolvent and the defect element F ( z )  E l7, is 
given by 

where Y(z) E is 

and the operator RI ( z )  is defined on MI by 

where Q ( z )  is defined in terms of Q by 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The above expression for R(z)  may be verified directly using theorem 4.3, and the fact that 

(4.18) 

which is required when one takes inner products with F E ) .  Using this result, it follows 
that (4.13) holds for elements of form (0, O)T with Q(z )  = 0; direct computation establishes 
it for Q(z) = 1 and also for vectors of form (p, O)T with p E Xt. Thus (4.13) holds on 

Q(z) 
q ( 4  

[(sgnMl[M111/2)-1~@, @IN = -- - 

t Here, it is useful to employ the decomposition 3C = Ran(-d2/dr2 - z ) ] , q y ~ , ~ ,  Ce-[-a’’2r, 



Generalized point interactions 1121 

the whole of n,. It remains to establish equation (4.18). Multiplying through by q(z),  the 
LHS of (4.18) is equal to 

(4.19) 
Using the identity (h 1 M;'cW;) = aG1&j and the results of section 3, the first term is 

( q 0 Y E )  I M r ' O )  = (I'qOYO I M F ' T " 0 )  + ( q O Y @  I 0). 

The required result then follows from the calculation 

4.3. Scattering theory 

In this section, we construct Mplller wave operators for hGpl relative to the free Hamiltonian 
ho = S- 'k2S on 7-G in order to check that hGpI actually exhibits the required scattering 
behaviour. Because scattering is a function of the continuous spectrum only, our results in 
this iection are actually independent of the precise form of A, and therefore of the locality 
requirement. 

We work in the S-wave, and employ a two space setting: let B be self-adjoint on XI, 
A be self-adjoint on X2 and 3 be a bounded operator from XI to K z .  Then the Mplller 
operators &(A, E ;  3) are defined by 

(4.22) s*(A, B ;  3) = Iim e'A'3e-'B'P,(B) 
f+F-m 

and are said to be completeif the closure of RanO*(A, B ;  f i  is equal to Ran P,(A). 

respectively. 

Theorem 4.4. 
are complete, and given by 

In the following,'3r and 3k are the natural embeddings of N, and into i7, and l7k  

Let 3 : 7-G + n, be given by 3 =*AT. Then n*(hGpI, ho; f i  exist, 

n*(hGpI, ho: 3) = ;iiAe*'""S (4.23) 

where &(k) is given by (3.1). 

Proof. Writing U, for multiplication by e-ikzr on K, we have 

(4.24) 

(4.25) 
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which vanishes as t -+ TOO by (non)-stationary phase arguments (see [26,corollary to 
theorem XI.141). Thus CJ_,7S1U, + e *" O strongly as t + TOO. The existence and 
form of the Meller operators are then immediate. One easily checks that they are unitary 
maps from to Pac(hGpc) =?Ax,  to establish completeness. 

We conclude that our construction does indeed yield the required scattering theory, and 
also that-as a by-product of the constructionemplete Mgller operators may easily and 
explicitly be determined. 

5. Examples 

As an application, we construct the class of GPI models with scattering data 
1 

kL 
cot&(k) = -- + kM (5.1) 

where L is the scattering length, and M is twice the effective range. These models therefore 
represent the effective-range approximation to the behaviour of a non-point interaction in the 
S-wave. This class of models has been partially studied by Shondin [ll], who considered 
the case M < 0 ('models of type Bz') and also appears as a special case of the models 
considered by Pavlov in [SI. (We also note that van Diejen and 'Iip [I31 have constructed 
models of type cot&(k) = (uk + bk3 + ck5)-' using the distributional method.) The case 
M > 0 does not appear to have been treated before. Our construction provides a unified 
construction for all models in the above class, and also provides the spectral representation 
such models as a by-product of the conshuction (although we will not state this explicitly). 

The above class of OPI models contains two interesting sub-families: the ordinary point 
interactions ( M  = 0) and also the resonance point interactions arising formally by setting 
L = 00, i.e. cot&(k) = kM with M E R U (CO]. Such models are required in situations 
where the scattering length is generically forced to be infinite, for example in certain systems 
of supersymmetric quantum mechanics. 

We begin by briefly treating the point interactions, both for completeness and also to 
demonskate how this class arises in our formalism. We then turn to the general case, 
obtaining RPI models in the limit L -+ -cu. 

5.1. Point interactions 

The required integral transform is 

7 = (1 + (kL)')-l''S - kL(1 + (kL)z)-'/zC. (5.2) 

In the cases L = O,OO, I reduces to S and C respectively, and the Hamiltonian is given 
immediately by I * k Z 7 .  We exclude these cases from the rest of our discussion. 

1. We 
find that U = 0, so MI = 0 (i.e. IT* = I). Straightforward application of proposition 3.1 
yields 

We therefore apply the construction of section 3, with p(z )  = -L-' and q(z) 

L > O  
M? = I 'xL)(xL' (5.3) 

- l o  L < O  

where x ~ ( r )  = (2/L)'/2e-'/L is normalized to unity. Hence if L < 0, 7 is unitary and the 
Hamiltonian is hL = 7'k2'T, with purely absolutely continuous spectrum W+. In the case 
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L > 0, the momentum Hilbert space~is extended to TG @ C, representing a single bound 
state, and the unitary dilation ? : + %i @ C takes the form 

/ " - \  

(X @ C has the obvious inner product.) The Hamiltonian is 

(5.5) 

and the locality~requirement fixes A = -L-', which is, of course, the usual value. Finally, 
the domain of hL is given by theorem 4.3 as the space of 'p with 'p. 'p' E AC1,,(O, w), 
'p" E Lz and satisfying the well known boundary condition 

(5.6) 'p(0) + Llp'(0) = 0. 

To summarize, all the well known properties of point interactions may be derived within 
our formalism. 

5.2. Effective-range approximution 

In this section, we maintain M # 0, 1. 
We will not explicitly construct the dilation (although this follows immediately f: ,om our 
discussion), but will use the results of section 4 to read off the domain and action of the 
GPI Hamiltonian hL.M. 

# 0, setting p ( z )  = -L-' + z M  and 41:z) 

Using the results of section 3, we find 

1 + i ( sgnM + sgnL) L # 00 

(5.7) 

Writing W ( z )  = -M(z - W I ) ( Z  - 02). Q is the subset of [ @ I ,  02) lying in the left-hand 
half-plane, and we have W I  + 02 = -M-l,  w102 = (ML)-' .  The residues a, are 

[~ ; ( I  +sgnM) L = O 0 .  
U =  1 Is21 = 

In addition, the space Mj = Ran M I  is equal to Clq), where 

~. .. k 
q ( k )  " ( k 2  + (k2M - L-I)2)1/2 

and the normalization constant is 

(5.9) 

(21M1/d/2 M L > O  
A,= { (5.10) 

( 2 1 M l / ~ ~ ) ' / ~ ( 1  - 4ML-')'/4 ~ M L  < 0. 

Using proposition 3.2, we obtain 

M c 0, L c 0 1:: M s O , L > O .  

MI =AIq)(ql A =  - sgnM( l  -4ML-')-'/' M L  < O  (5.11) 

Accordingly, the extended position inner product space is il, = @ C with J-inner 
product specified by J = @ (- sgn M). The scalar component is the coefficient of 17) in 
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W. For all generic cases (i.e. all cases other than L = 4M > 0) theorem 4.3 entails that 
the domain of hL.M is 

D(hL.M) = [ ( ) I p, p' E ACiOc(O, m), p. 9'' E Lz; @ = -IMll%O)} (5.12) 

and that the action is 

Moreover. one may show that these equations also hold in the non-generic case L = 4M > 
0. 

It is worth noting how this domain and action correspond to the scattering data (5.1). 
Solving the equation hL.,+,((D, @)T = kz(p, for the generalized eigenfunctions of h L . M ,  
we find q(r )  c( sin(kr + d(k) )  for some d(k), and also obtain the relation 

(5.14) 
which entails that kcotd(k) = q'(O)/v(O) = -L-' + k2M. Thus d(k) i s  precisely the 
scattering data &(k). 

The RPI models, which have scattering data cots&) = kM are obtained in the same 
way. The space MI is spanned by $,&) = ( 2 1 M l / ~ ) ' / ~ ( l +  (kM)z)-'/2, and the operator 
M I  is found to be M I  = -(sgnM)[@~)(@Ml. Thus the inner product space is n, = wfBC 
with J = 1 fB (- sgn M ) .  They have the domain (5.12) and action 

I (0 \ I  \ 

-sgnMIMI-'l'((p'(O) + L-'(o(o)) = - k21 M 1'/2q(0) 

(5.15) 

Let us consider the physical Hilbert space for these models. From section 4 ,  
this is constructed by projecting out the hyperbolic invariant subspace, and also those 
eigenfunctions with negative norm squared (if present). The bound states of hL,.,, are 
clearly vectors of form (to, IM11/2)T with norm squared equal to -(2Rew)-' - M ,  where 
o is a root of o2 + M - ' o  + (ML)-' = 0. There are four cases to consider. 

Care (i): M < 0. n, is positive definite so no projection is required. 

Case (ii): M > O7 L c 0. There is a unique bound state with 
1 + (1 - 4M/L) ' l2  

-2M 
o= 

and negative norm squared. Projecting this state out, we obtain 

(5.16) 

(5.17) 

Care (iii): M > 0, 0 < L c 4M. There are two bound states with complex conjugate 
eigenvalues. Accordingly, their eigenfunctions span a hyperbolic invariant subspace. 
Projecting this subspace out, we find 

where w is given by equation (5.16). 
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Case (iv): M > 0, L > 4M. There are two bound states with real eigenvalues. However, 
only the state specified by (5.16) has negative norm. Projecting this out, we arrive at the 
same expression for ?-&hys as in case (ii). 

RPI models are covered by case (i) for M < 0, and have q h y s  given by (5.17) for 

The GPI Hamiltonian acts on ?-&hys by restriction. For example, in case (ii) abspve, we 
M > 0, with w = -1/M. 

have 

MV(0) = -Ea I V ) )  (5.19) 

on which hL.M [qhYs acts as before. The restricted operator has the same continuum spectrum 
as h L . M .  but has no bound states in this case. Moreover, the property of locality~is 
partially lost: it is clear that vectors of form ( v ) . O ) ~  with V )  E c~(O,00) afe in ?-&hys 

 only if V )  I tu. However, for elements of this form in q h y s ,  it remains the case that 
h L . M I q w ( p . O ) T  = ( - v ) " , O ) ~ .  Thus the properties of locality and 'positivity' are not 
entirely compatible. 

5.3. Physical interpretation 

In this section, we discuss how the effectiverange models constructed above may be used.to 
model Schrodinger operators H = -A+ V, where V is smooth, spherically symmetric and 
compactly supported within radius a of the origin. Our methodology extends that described 
in 131, in which the scattering length approximation is discussed. 

Given a smooth spherically symmetric potential V(r) supported within radius a of the 
origin, we may find the 'best-fit' GPI model hL,M as follows. Let uo be the S-wave zero- 
energy eigenfunction, i.e. the solution to -.&' + Vu0 = ~ O  with regular boundary conditions 
at the origin. Then the arguments of [l7,subsection 11.21 give the low-energy parameters 
L a n d M a s  

(5.20) 

(5.21) 

Thus the scattering behaviour is cots&) = -(kL)-' + kM + O(k3) and the best fit GPI 
model in our class is h L , M .  We refer to equations (5.20) and (5.21) as fitting formulae; 
equation (5.20) is the fitting formula employed in [3]. The range of energies for which 
the approximation is valid can be determined by a 'believability' analysis analogous to that 
described in [3]. We will not do this here. 

Note that M obeys the bound 

-ca < M < a [I -; + (32}. 
Moreover, this bound is best possible: for any L E W U (ca] and any M in the above range, 
one can clearly find a smooth function uo(r) satisfying regular boundary conditions at the 
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origin, uo a (1  - r/L) for r > U and such that (5.21) holds. Then the potential defined 
by V(r) = u;(r)/uo(r) has S-wave scattering behaviour approximated to second order by 
h L , M .  The contribution to the total scattering cross section from the effective-range term 
generally outweighs that from higher angular momenta, so the S-wave GPI model provides 
a second-order approximation to the full scattering behaviour. 

We have 
constructed h L . M  so that its scattering behaviour matches that of a given Schrodinger 
operator at low energies, E. For larger I El, the approximation breaks down-in the language 
of [3] we say that it is no longer ‘believable’. Thus, deeply bound states are unlikely 
to be believable. In particular. for 0 < L < 4M, h L . M  exhibits a complex conjugate 
pair of eigenvalues, which can never be believablet. Such phenomena are artifacts of 
the idealization process, due to the truncation of the low-energy expansion. The issue of 
believability is discussed in [3]; similar comments are made in [13]. 

Finally, we discuss the interpretation of the discrete spectrum of 

6. Conclusion 

We begin by discussing various generalizations of our method. There are many situations 
in which the analysis of subsection 2.2 may be applied. In two dimensions, for example, 
one can consider radial GPI Hamiltonians which agree with 

away from the origin, as models for an infinitesimal ‘dot’ of magnetic flux U, with lul < 1. 
In this case, one must employ Hankel transforms rather than sine and cosine transforms. 
In [I91 we will implement this programme to construct a models of RPI type for the Dirac 
equation in the presence of an infinitesimal tube of flux. These models provide the leading- 
order approximation to the scattering data. 

Our method could also be applied to S-wave GPI models with a Coulombic tail. In this 
case, the appropriate integral transforms would be based upon Whittaker functions and the 
scattering data would be specified in terms of Coulomb-modified partial wave shifts. In 
this case, the dimension of MZ would be countably infinite, due to the countable discrete 
spectrum of such models. However, one would expect MI to remain finite dimensional for 
simple models. 

Secondly, it is of interest to generalize the unitary dilation method to sectors of higher 
angular momentum with e 2 1 (and the corresponding analogues for magnetic flux dots, 
i.e. IvI > 1, and Coulombic GPI for, .? > 1). This is more problematic, because the radial 
Hamiltonian -d2/dr2 + e(.?+ l)/r2 is essentially self-adjoint on Cp(0, CO) and so the 
method of subsection 2.2 does not apply. Here, it might be possible to obtain a suitable 
integral transform by analysing  the^ distributional construction. We hope to return to this 
elsewhere. 

Finally, we consider applications to the definition of mays of point scatterers. Here, 
the most likely use of our methods is to generate the ‘monomer’ by inverse scattering. 
By passing to the resolvent written in the form of Krein’s formula, one can isolate the 
appropriate ‘defect element’ and proceed to form the array by methods discussed in [13], 
which generalize the procedure for arrays of PI developed in [27]. 

t These are not eigenvalues of hL.M restricted to the physical Hilbert spa-, However, they persist as poles in 
the scanering amplitude and our remarks still apply: h i . M  does not give a reliable approximation to the scattering 
theory at those scales. 
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To summarize, we have introduced an inverse scattering construction for CPI models 
using the theory of unitary dilations, and developed the method in detail for the class of 
single centre S-wave GFI models with rational S-matrices. A physical locality requirement 
completes the specification of the Hamiltonian, whose scattering, spectral and domain 
properties are explicitly determined from our results. 

Acknowledgments 

The notions of fitting formulae and the general methodology of subsection 5.3 are due in 
origin to Bernard Kay [31; I thank him and also Graham Allan and Clive Wells for useful 
conversations. In addition, I thank Churchill College, Cambridge, for financial support 
under a Gateway Studentship. 

References 

[I] Fermi E 1934 Nuovo Cim 11 157 
[2] Berezin F A  and Faddeev L D 1961 Soviet Math. DUM. 2 372 
[3] Kay B S and Fewster C I When can a small object have a big effect at large scales? in prepxation 
141 Albeverio S, GeszIesy F, H0egh-Krohn R and Holden H 1988 Solvable Model8 in Qumtwfl Mechanics 

151 Huang K and Yang C N 1957 Phys. Rev. 105 767 
161 G r o w "  A and Wu T T 1984 3. Math Phyx. 25 1742 
[7] Shirokov Yu M 1981 Theor. Moth Phys. 46 191 and other papers in the same issue 
[8] Pavlov B S 1984 Theor. Math Phys. 59 544 
191 Pavlov B S 1987 RussiM Mah. Surveys 42 127 

[lo] Pavlov B S and Shushkov A A 1990 Math USSR Sbomik 65 147 
[ll] Shondin Yu G 1985 Theor. Math. Phys. 64 937 
[12] Shondiu Yu G 1988 Theor. Math. Phys. 74 220 
[13] van Diejen J F and l i p  A 1991 3. Math Phys. 32 630 
1141 Sz-Nagy B 1953 Acta Sci. Math (Szeged) 15 87 
[IS] Davis C 1970 Acta Sci. Math (Szezed) 31 75 
[i6] Akhiezer N I and Glazman I M 1963 Theory ofLinenr Operators in Hilbert Space "0111 (New York: Ungar) 
[17] Newton R G 1966 Scattering T h m v  of Waves andPmicIes (New York Mffimw-Hill) 
[18] Fewster C I and Kay B S Low energy quantum dynamics in magnetic fields of small support in preparation 
[19] Fewster C I, Thin wire idealisations of the Dirac equation in the presence of a flux tube, in preparation 
[20] Halmos P R 1967 A Hilbert Space Problem Book (Princeton: Van Nostrand) 
[21] J. Bogn61 1974 Indefinite Inner Product Spaces (Berlin: Springer) 
[22] Azizov T Ya and Iokhvidov I S 1989 Linear Operators in Spaces with M fndefiife Metric (New York: 

[ U ]  Reed M and Simon B 1975 MethodF of Modem Mathemtical Physics V d  11: Fourier Amlyds, Self- 

[24] ~Cohn P M 1982 Algebra vol I, 2nd edn (New York Wley) 
[25] Reed M and Simon B 1972 Methods ofModern Malhemlicai Physics Volf: FunctionalAMlysis (New York: 

[26] Reed M and Simon B, Methods of Modern Marhemtical Pky3ics Vol Iff: Sconering Theory (New York 

[27] Grossmann A, H~egh-Krohn R and Meb!ihout M 1980 1. Math. Phys. 21 2376 

(Berlin: Springer) 

Wiley) 

Adjointness (New York Academic) 

Academic) 

Academic) 


